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Abstract The insurance model in the form of Critical
Illness (CI) is generally structured by a multi-state model
that allows us to describe changes in insurance policies based
on status changes experienced. The model in this study
discusses the Markov process, which describes the critical
illness insurance policy in each state for a continuous-time.
Critical illness of breast cancer is modeled by several states
consisting of A is healthy or disease-free, B is early cancer,
C is cancer increase after chemo, and Y is dead from cancer.
This condition is based on the response to treatment after
chemotherapy. The first steps in this study are to assign a
function to the transition intensity from state to state and
the transition probability. The transition probability of the
multi-state model is the solution of the Kolmogorov forward
differential equation. The following discussion is to create
a formula for calculating the pure premium rate based on
age intervals. A case study based on medical record data at
dr.Sardjito Hospital is applied to calculate insurance premiums
based on policies and age groups. A case study based on med-
ical record data at dr.Sardjito Hospital is applied to calculate
insurance premiums based on policies and age groups. The
premium generated in this study is assumed to only depend on
the number and time of state transfers. This insurance model
can be an alternative to a more accurate insurance calculation
based on the incidence of displacement of critically ill patients,
especially breast cancer patients.

Keywords Critical Illness Insurance, Multi State Model,
Breast Cancer, Pure Premium Rate, Chemotherapy

1 Introduction

There are various types of health insurance products in the
world, and there are many traditions of actuarial calculations
that are used. The insurance model in the form of Critical Ill-
ness (CI) or Long Term Care (LTC) is generally structured by
a multi-state model that allows us to describe changes in insur-
ance policies provided based on status changes experienced.
The multi-state model is a model in a continuous stochastic
process that discusses the movement of a person in a limited
number of states. Status can be in the form of health, illness,
or death. This change or transfer of state is called a transition
or event.

The complexity of the multi-state model depends very much
on the number of states and the transition probability. Transi-
tion opportunities from one state to another are formed from
the transition intensity. The transition intensity provides the
rate of change from one state to another per unit time. The
Markov model in the multi-state model is widely used as a ba-
sis for the analysis and development of a transitional oppor-
tunity model. A person’s chance to transition from healthy to
sick status or vice versa in the future depends only on his cur-
rent state.

Several studies on critical illness insurance models have
been conducted. Gui and Macdonald [1] have researched the
epidemiology of Early-Onset Alzheimer’s Disease (EOAD) for
life insurance and critical illness insurance. Gutierrez and
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Macdonald [2] discussed Adult Polycystic Kidney Disease
(APKD), which are genetically dominant autosomal genes that
lead to End-Stage Renal Disease (ESRD) or kidney failure.
Gutierrez and Macdonald [2] proposed a critical illness (CI)
insurance model and estimated the onset rates of ESRD and
APKD using two studies. Other events leading to claims under
CI policy were included in the model studied. Other critical
illness studies are coronary heart disease and stroke by Mac-
donald et al., [3]. This part 1 study aims to develop a model
that can assess the impact on insurance coverage of genetic in-
formation relevant to coronary heart disease and stroke. The
study part II of Macdonald et al. [4] extends the model created
in Part 1 to include other critical illnesses, such as cancer and
renal failure, and describes several applications of the model.

In the insurance literature, several authors have reviewed the
multi-state model in their writings. The Markov multi-state
model first appeared by Amsler [5] and Hoem [6]. Haberman
[7] discusses the solution to the multi-state model problem by
utilizing a decrement table. In the following paper, Haberman
[8] provides an alternative solution using the assumption of
the Markov model, namely that there is a transition intensity
in each status. In the other paper, Waters [9] compared the
two approaches, namely FOIA and TIA (transition intensities
approach), and concluded that TIA is better for a multi-state
model. Haberman and Pitacco [10] discussed applying a multi-
state model based on the Markov model in health insurance.
The Markov multi-state model is used to calculate the intensity
of the transition, the transition between statuses, and the pre-
mium on long-term care insurance (LTC) by Kusumawati and
Gunardi [11]. For a comprehensive survey of the CI and LTC
insurance actuarial models, see Pitacco [12].

Insurance that covers critical illness is different from
health insurance. Health insurance helps cover costs needed
while in hospital, such as doctor visits, hospital bills, and
surgery. Meanwhile, critical illness insurance disburses a cer-
tain amount of cash when a person is diagnosed and is arranged
by the customer for whatever needs he needs. In other words,
the benefit of protection for critical illness is given directly to
customers, not to hospitals or doctors. Customers have the full
right to use the cash according to their daily needs. In this re-
search, we will discuss the problems of critical illness, namely
breast cancer, by forming a multi-state model.

Breast cancer occurs due to the abnormal growth of cells
in the breast. Genetically inherited gene mutations cause ab-
normal growth. The gene mutation causes the formation of
cancer, whether it is a benign or malignant cancer. The classi-
fication of benign and malignant cancers has been investigated
using Regularized Logistic Regression with Adaptive Elastic
Net [13]. The type of cancer also determines the success of
chemotherapy. Chemotherapy can be the main alternative in
cancer treatment, although the body’s response to chemother-
apy will vary. The treatment response was used as a reference
in forming a multi-state model in this study.

2 Model Construction
The model in this study discusses the Markov process, which

describes the critical illness insurance policy in each state for a
continuous time. Critical cancer disease is modeled by several
states, namely {S (t)}t∈[0,T ] with S is a set whose members
A is healthy or disease-free, B is early cancer, C is advanced
cancer or cancer increase after chemo, and Y is dead because
cancer. This condition is based on the response to treatment
after chemotherapy. Transitions between statuses are shown in
Figure 1. The treatment response of patients after chemother-
apy is shown in Table 1. This model assumes that the first time
patients come to the hospital for laboratory examinations are
in-state B, which means they have cancer. Then the change in
state B to C, Y , or back to A is obtained from the treatment
response to chemotherapy. Sometimes there is no success in
the chemotherapy process, so patients with cancer in-state B
will move to state C as cancer grows, this is called progres-
sive disease. The switch from B to A is called a complete
response because the success of chemotherapy that causes can-
cer is no longer visible. Patients in-state C may also expe-
rience a complete response by returning to state A. Patients
who died in states B and C were classified as cancer deaths.
Sometimes, chemotherapy does not have a significant impact
on cancer growth, so it does not change the state of cancer, this
event is called a stable disease or partial response. Figure 1
shows the diagram of changes between states.

Table 1. Treatment Response

Status Change Response
B → C Pregressive Disease
C → A Complete Response
B → A Complete Response
B → B Stable Disease / Partial Response
C → C Stable Disease / Partial Response

Figure 1. Compartment Status Diagram

3 Transition Probability
Let x(x ≥ 0) be the patient’s age, and S(t) is the state oc-

cupied by the policyholder at time t. If the policyholder is in
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status i at age x, then the definition of the transition probability
of the policyholder who is in status j at age x+ t is

tp
ij
x = P {S (x+ t) = j|S (x) = i} t ∈ [0, T ] , i, j ∈ S, i ̸= j

The definition for the transition intensity µij is as follows

µij (x) = lim
t→0

(
tp

ij
x

t

)
t ∈ [0, T ] , i, j ∈ S, i ̸= j

If the policyholder remains in status i, meaning that he has not
changed at age x+ t, it is defined.

tp
ii
x = P {S (x+ t) = i|S (x) = i} t ∈ [0, T ] , S (x) = i

The transition probability from the multi-state model is the so-
lution of Kolmogorov’s forward differential equation, as in the
research of Haberman and Pitacco [10]. The transition proba-
bility according to the model in this study (Figure 1) is
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The first step in this research is to determine the intensity
of the transition based on the constructed model. Each patient
represents the realization of the Markov chain Xx where x is
the patient’s age in the five states. Each patient’s transition
was observed, and the time the transition occurred. For each
i, j = A,B,C, Y model in Figure 1 obtained
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where
tB : the total time a person was in early cancer status (years)
tC : total time a person was in advanced cancer status (years)
nij : the number of people transitioning from state i to state j

The solution of the following equation is sought to determine
the estimator of the transition intensity.
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In the same way, another transition intensity is obtained.
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, (10)
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The transition’s intensity will be used to determine the value
of the transition probability, which has been stated in the dif-
ferential equations (1-7). Based on the conditions µ described
in equations (9-13), the solution of the transition probability
differential equations is expressed in the equation (14-20).
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4 Pure Premium Rate
Critical Illness (CI) coverage is usually combined with life

insurance (endowment) to benefit sufferers or additional ser-
vices. When serious illness occurs, the insurance company
prepays the sum insured in case of death. In case of crit-
ical illness, the insurance company pays additional benefits
for the sum insured in the end. Depending on the type of
CI coverage, we can define different formulas for calculating
the pure premium rate [14]. Based on the age period (x, x +
N), the integral formula of the pure premium is obtained by
adding up the sub-integrals that are each defined in the sub-
interval (0, y1] , (y1, y2] , . . . , (yk+1, yk+2) , . . . , (yn−1, N ]
where yk+1 = xk+1 − x and with y0 = 0, and yn = N .
Based on these conditions, the integral result can be obtained
at the sub-interval (yk, yk+1).
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4.1 Stand-Alone

Stand-Alone critical illness policy with a duration limit of n,
where the amount of coverage is calculated at the time of one of
the critical illnesses. Equation (21) is the insurance premium
rate from state transfer from early cancer to advanced cancer
(progressive disease).

Ā(SA)
x:n =

n−1∑
k=0

∫ yk+1

yk

tP
BB
x µBC (x+ t) vtdt

= µBC
x

(
e−(µ

BA+µBC+µBY +ν)n − 1

− (µBA + µBC + µBY + ν)

)
(21)

4.2 Additional-Benefit

Additional-Benefit critical illness policy for term life insur-
ance with a duration limit of n, where the amount of coverage
is paid at the time of a critical illness and will receive additional
benefits if the policyholder dies of a critical illness before the
end of the policy contract. The equation (22) calculates the pre-
mium from the initial cancer condition with additional benefits
when dying from cancer before the end of the policy contract.
While the equation (23) is the calculation of additional bene-
fits after the patient progresses to an advanced cancer state and
dies due to an advanced cancer stage while still on the policy
contract.
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x:n =

n−1∑
k=0

∫ yk+1

yk

(
tPBB

x µBY (x+ t) vt
)
dt

= µBY
x

(
e−(µ

BA+µBC+µBY +ν)n − 1

− (µBA + µBC + µBY + ν)

)
(22)
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4.3 Endowment-Benefit

Endowment-Benefit critical illness policy with a duration
limit of n, where the sum insured is paid at the time of critical
illness and will receive additional benefits if the policyholder
recovers before the end of the policy contract. In addition to
the additional benefits offered by insurance due to death when
exposed to cancer, the insurer can also add other benefits in
the form of endowment life insurance. This additional benefit
is provided when cancer patients have a complete response af-
ter chemotherapy. This insurance helps customers to be able to
save and still get insurance benefits even though they are recov-
ering from a critical illness. The calculation of this additional
benefit is shown in equation (24) for patients who recover from
early cancer and equation (25) for patients who recover from

advanced cancer.
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5 Case Study
In this section, we will conduct a case study using data for

breast cancer patients at Dr. Sardjito Hospital Yogyakarta. This
study is to form a critical illness insurance model in Indonesia
using the continuous-time multi-state Markov model assum-
ing constant transition intensity and stationary Markov process
and calculating the premium from critical illness insurance for
certain benefits. To estimate the parameters of intensity and
probability of transition, data representing the number of peo-
ple transitioning from one state to another is needed per unit of
time.

We use survival data taken from patient health records of as
many as 130 patients at Tulip, Dr.Sardjito Hospital, and de-
termine the observation period from July 2018 to April 2021.
This data has been used in previous research [15]. Information
obtained is the date of birth, initial examination, the date of re-
sponse status after chemotherapy, and the date of death. Based
on the data obtained, the patients’ status consisted of free of
disease, early cancer, advanced cancer, and death from cancer.
The transfer of patient status is determined based on the treat-
ment response, as shown in Table 1. The flow of state transfer
is depicted in Figure 1.

5.1 Transition Intensity Estimation
The patient’s behavior is observed during the observation pe-

riod. The data were classified according to the age group of
observation. The number of patients who transitioned between
states was calculated based on the classification of observa-
tional age groups. The calculation results can be seen in the
Tables 2 and 3 below.

Table 2. Number of transitions by age interval and type of transition (1)

Age intervals nAA nBB nCC nBA

30-39 4 1 0 5
40-49 28 10 5 34
50-59 17 7 4 28
60-69 5 3 6 10
70-79 2 1 0 3

The Tables 2 and 3 show that the most patients who tran-
sitioned from early cancer to healthy were 34 people aged 40
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Table 3. Number of transitions by age interval and type of transition (2)

Age intervals nBC nCA nBY nCY

30-39 1 0 0 1
40-49 14 1 5 8
50-59 14 3 6 5
60-69 8 1 2 1
70-79 1 0 1 1

to 49 years. Otherwise, the few who transitioned from early
cancer to healthy were people aged 70 to 79 years with 3 peo-
ple. These two numbers represent the largest number resulting
from the transition of the patient’s condition in each age group.
From these data, it can be seen that chemotherapy positively
impacts the patient’s recovery.

The length of time the patient faces the risk of moving to
another state is calculated based on the difference between the
transition date and the first date in the previous state. If a pa-
tient is newly diagnosed with cancer, the time period is calcu-
lated from the first time the patient performs a lab examination.
The total transition time from one state to another can be seen
in the Table 4. It can be seen that the most time spent in the age
interval is at the age of 40 to 49 years. The estimation of tran-
sition intensity parameters for the age interval using equations
(9) and equation group (10) can be seen in the Table 5.

Table 4. Total transition time by age interval and transition type

Age intervals tA tB tC
30-39 3,1595 3,5893 0,2793
40-49 30,5763 32,6434 9,1910
50-59 27,5838 34,4422 8,2190
60-69 9,5250 11,3018 6,9295
70-79 3,2991 2,7789 0,4600

Table 5. The estimated value of the transition intensity for each age interval

Age interval µBY µBA µCA µBC µCY

30-39 0,279 1,672 0,000 0,557 3,581
40-49 0,460 1,348 0,653 0,735 1,414
50-59 0,377 1,016 0,852 0,610 1,095
60-69 0,442 1,150 1,010 0,973 1,010
70-79 0,720 1,439 0,000 0,720 2,174

For example, in the age range of 50-59, the intensity of
the transition from early cancer to advanced cancer after
chemotherapy was 0.6097, which means that the rate of change
in a person’s status from an early cancer patient who pro-
gressed to advanced cancer patient was 0,6097. The transi-
tion intensity from cancer patients, either early or advanced
to dying from cancer, is 0,3774 and 1,0950, respectively. At
the same time, the transition intensity from early or advanced
cancer patients who returned to health is 1,0162 and 0,8517,
respectively. This interpretation also applies to other age inter-
vals.

5.2 Transition Probability Estimation
The transition probability estimation is obtained as in the

equation (14-20). If we take t = 1, then the transition proba-
bility values for the five age groups are obtained in the Tables
6 and 7. It can be seen how big the chance of someone chang-
ing state is based on the age interval. The greatest opportunity
to change status from advanced cancer to dead is because ad-
vanced cancer occurs from age 30 to age 39. The lowest prob-
ability of switching states is the state from advanced cancer to
cure at 30 to 39 years and the age of 70 to 79 years with a prob-
ability of zero. This means that it is doubtful that patients with
advanced cancer can be cured. Likewise, other transitions can
be seen in Tables 6 and 7.

Table 6. Transition probability (x, x+ 1) for each age interval (1)

Age interval PAA
x PBB

x PCC
x PBA

x

30-39 0,058 0,082 0,028 0,045
40-49 0,127 0,079 0,127 0,045
50-59 0,196 0,135 0,143 0,068
60-69 0,207 0,077 0,133 0,045
70-79 0,220 0,056 0,114 0,042

Table 7. Transition probability (x, x+ 1) for each age interval (2)

Age intervals PBC
x PCA

x PBY
x PCY

x

30-39 0,012 0,000 0,906 0,972
40-49 0,024 0,035 0,897 0,598
50-59 0,036 0,060 0,829 0,482
60-69 0,032 0,068 0,891 0,434
70-79 0,017 0,000 0,927 0,886

5.3 Premium Calculation
Equations (21)-(25) are used in the calculation of premiums

with different policies, can be a stand-alone policy, or a policy
with additional benefits and endowment benefits.

1. Stand-Alone
In stand-alone policies, benefits are only provided when
there is an increase in critical illness, where cancer pa-
tients are first diagnosed in state B and experience an in-
crease in cancer severity to state C after chemotherapy.
After going through the calculations, the premium ob-
tained from a stand-alone policy with the assumption that
the coverage period is one year and an interest rate of 5%,
along with the premium earned by age group, the results
are shown in Table 8.

Table 8 shows that premiums fluctuate by age group. The
largest premium is in the age range of 60-69 with 34,5%,
and the smallest is in the age range of 30-39 with 20%.
The amount of insurance premium, in this case, can be ob-
tained by multiplying the result of the premium percent-
age by the unit of the benefit obtained within one year.

2. Additional-Benefit
In the additional benefit policy, the benefit is given when
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Table 8. Stand-alone policy premium for one year

Age intervals Ā
(SA)
x:n

30-39 0,20099140
40-49 0,26236175
50-59 0,25883888
60-69 0,34486346
70-79 0,23259518

the status is critically ill, and the additional benefit is given
when the person dies due to a critical illness suffered dur-
ing the policy period. Additional benefit policy premiums
with a coverage period of one year with an interest rate of
5% for the age group are shown in Tables 9 and 10.

Table 9. Additional-benefit policy premium for one year from state B to state
Y

Age intervals Ā
(AB)
x:n

30-39 0,10049570
40-49 0,16397609
50-59 0,16023359
60-69 0,15675612
70-79 0,23259518

Based on the table 9, the highest premium calculation is
in the age range of 70-79 years, which is 23.3%, and the
lowest premium is at the age of 30-39 years, at 10%. This
premium is paid when the customer is in state B and wants
additional benefits if the patient dies of cancer during the
policy agreement period at any time.

Table 10. Additional-benefit policy premium for one year from state C to state
Y

Age intervals Ā
(AB)
x:n

30-39 0,96010127
40-49 0,58764406
50-59 0,47394931
60-69 0,42637697
70-79 0,87178674

Based on Table 10, the premium calculation shows a value
that tends to decrease until the age of 69 years and in-
creases after that. The premium value obtained is very
high at the age of 30-39 by 96% and at the age of 70-79
by 87%. Compared to the additional benefits in state B,
the additional premium in state C is much larger. It is
reasonable because in state C, cancer has become more
severe and prone to death.

3. Endowment-Benefit
In an endowment-benefit policy, additional benefits are
provided when recovering from cancer within the policy’s
term. The state of cure from cancer is obtained when the
patient has a complete response after chemotherapy. The
calculation of the endowment benefit premium with an in-
surance period of 1 year with an interest rate of 5% can be
seen in table 11 and table 12.

Table 11. Endowment-benefit policy premium for one year from state B to
state A

Age intervals Ā
(EB)
x:n

30-39 0,60297420
40-49 0,48099654
50-59 0,43139813
60-69 0,40756591
70-79 0,46519036

The premium calculation in Table 11 tends to decrease,
except for an increase in the age group of 69 to 70 years.
The highest premium is in the age range of 30-39 years
at 60.3%. In other age ranges, premiums range from 40%
to 48%. The premium calculation in Table 12 tends to in-
crease with increasing age from 40 to 69. In this endow-
ment benefit premium calculation, there are zero values in
the age range of 30-39 and 70-79. This situation is caused
by no data on patients who remain in state C and move to
state A, so the transition intensity data is zero.

Table 12. Endowment-benefit policy premium for one year from state C to
state A

Age intervals Ā
(EB)
x:n

30-39 0
40-49 0,27122034
50-59 0,36862724
60-69 0,42637697
70-79 0

6 Conclusions
The formulas for calculating pure premium rates are ob-

tained from the constructed model. The application of this
model requires medical data from the hospital. The data used
are medical records of breast cancer patients from the ”TULIP”
Installation of Dr. Sardjito Hospital Yogyakarta. Researchers
collaborate with the hospital to record data for each patient
from the start of treatment. Starting with the medical record
data of each cancer patient collected by the Data Bank Hos-
pital, the data is processed to obtain information according to
the model created. The application of the model using hospital
data is shown in the case study. The premium generated in this
study is assumed to only depend on the number and time of
state transfer data.

Based on the calculation formula for each insurance policy
with an interest rate of 5%, various nominal premiums have
been discussed in this case study. In stand-alone policies, the
premium paid ranges from 20% to 34.5% of the benefit. In an
additional benefit policy for early cancer, the premium value is
10% to 23.3%. Meanwhile, the premium value for advanced
cancer is higher, from 42.6% to 96%. In an early cancer en-
dowment benefit policy, the premium value is between 40.8%
to 60.3%. Whereas in patients with advanced cancer, a smaller
premium is obtained, which is between 27.1% to 42.6%. How-
ever, this value cannot be known from the data studied at the
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age of 30-39 and 70-79.
Calculating premiums from various policies that can be of-

fered have rational values, and there are also unreasonable val-
ues. These unreasonable values can be caused by the number of
patients experiencing the transition being too few or even non-
existent in a specific age group. In the case of insurance that
we often know in the field, the premium paid increases with
age. However, this is not always the case based on the data
in this model. This insurance model can be an alternative to a
more accurate insurance calculation based on the incidence of
displacement of critical patients, especially breast cancer pa-
tients.
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