ACADSTAFF UGM

CREATION
Title : On representation of a ring on a free module over a commutative ring with identity
Author :

NAIMAH HIJRIATI (1) Prof. Dr. Sri Wahyuni, S.U. (2) Prof. Dr.rer.nat. Indah Emilia Wijayanti, S.Si., M.Si. (3)

Date : 0 2017
Keyword : Vector spaces,Commutative ring Vector spaces,Commutative ring
Abstract : -Let R be a commutative ring with identity and M be a free R-module then we always have a representation of R, that is homomorphism ring ?: R ? End R(M), with ?(r) := ? r : M ? M and ? r(m) = rm for all r ? R and for all m ? M. In this paper, we will present some properties of representations of ring R on R-module, based on some notions in representation of R on vector space, such as admissible submodule, equivalence of two representations, decomposable representation and completely reducible representation. It will be shown that if M, N are two free R-modules then two representations ?: R? End R(M) and ?: R ? End R(N) are equivalent if and only if there is a module isomorphism T : M ? N. If R is a principle ideal domain(PID), then it will be shown that every submodule of M is an admissible submodule of M, every representation of ring R on a free R-module is decomposable, and a representation of R on M is completely reducible if and only if M is semisimple.
Group of Knowledge : Matematika
Original Language : English
Level : Internasional
Status :
Published
Document
No Title Document Type Action
1 Cover.pdf
Document Type : [PAK] Halaman Cover
[PAK] Halaman Cover View
2 2017-Hijriati_2017_J__Phys_%3A_Conf__Ser__893_012010.pdf
Document Type : [PAK] Full Dokumen
[PAK] Full Dokumen View
3 Reviewer-Naimah.pdf
Document Type : [PAK] Halaman Editorial
[PAK] Halaman Editorial View
4 table conten.pdf
Document Type : [PAK] Daftar Isi
[PAK] Daftar Isi View