ACADSTAFF UGM

CREATION
Title : Semiparametrically Efficient Estimation of Constrained Euclidean Parameters
Author :

Dr. Nanang Susyanto, S.Si., M.Sc., M.Act.Sc. (1) Chris A. J. Klaassen (2)

Date : 2017
Keyword : semiparametric estimation, semiparametric submodels, efficient estimator, restricted parameter, underlying parameter, Gaussian copula semiparametric estimation, semiparametric submodels, efficient estimator, restricted parameter, underlying parameter, Gaussian copula
Abstract : Consider a quite arbitrary (semi)parametric model for i.i.d. observations with a Euclidean parameter of interest and assume that an asymptotically (semi)parametrically efficient estimator of it is given. If the parameter of interest is known to lie on a general surface (image of a continuously differentiable vector valued function), we have a submodel in which this constrained Euclidean parameter may be rewritten in terms of a lower-dimensional Euclidean parameter of interest. An estimator of this underlying parameter is constructed based on the given estimator of the original Euclidean parameter, and it is shown to be (semi)parametrically efficient. It is proved that the efficient score function for the underlying parameter is determined by the efficient score function for the original parameter and the Jacobian of the function defining the general surface, via a chain rule for score functions. Efficient estimation of the constrained Euclidean parameter itself is considered as well. Our general estimation method is applied to location-scale, Gaussian copula and semiparametric regression models, and to parametric models.
Group of Knowledge : Statistik
Original Language : English
Level : Internasional
Status :
Published
Document
No Title Document Type Action
1 euclid_ejs_1503626423.pdf
Document Type :
View