Title | : | Strongly Graded Rings Which Are Maximal Orders |
Author | : |
Hidetoshi Marubayashi (1) Prof. Dr. Sri Wahyuni, S.U. (2) Prof. Dr.rer.nat. Indah Emilia Wijayanti, S.Si., M.Si. (3) Iwan Ernanto S.Si., M.Sc. (4) |
Date | : | 0 2018 |
Keyword | : | Graded ring, maximal order,prime Goldie ring,hereditary Noetherian prime rings. Graded ring, maximal order,prime Goldie ring,hereditary Noetherian prime rings. |
Abstract | : | Let $R = \oplus_{n \in \mathbb{Z}} R_n$ be a strongly graded ring of type $\mathbb{Z}$. In [6], it is shown that if $R_0$ is a maximal order, then so is $R$. We define a concept of $\mathbb{Z}$-invariant maximal order and show $R_0$ is a $\mathbb{Z}$-invariant maximal order if and only if $R$ is a maximal order. We provide examples of $R_0$ which are $\mathbb{Z}$-invariant maximal orders but not maximal orders. |
Group of Knowledge | : | Matematika |
Original Language | : | English |
Level | : | Internasional |
Status | : |
Published
|