ACADSTAFF UGM

CREATION
Title : Strongly Graded Rings Which Are Maximal Orders
Author :

Hidetoshi Marubayashi (1) Prof. Dr. Sri Wahyuni, S.U. (2) Prof. Dr.rer.nat. Indah Emilia Wijayanti, S.Si., M.Si. (3) Iwan Ernanto S.Si., M.Sc. (4)

Date : 0 2018
Keyword : Graded ring, maximal order,prime Goldie ring,hereditary Noetherian prime rings. Graded ring, maximal order,prime Goldie ring,hereditary Noetherian prime rings.
Abstract : Let $R = \oplus_{n \in \mathbb{Z}} R_n$ be a strongly graded ring of type $\mathbb{Z}$. In [6], it is shown that if $R_0$ is a maximal order, then so is $R$. We define a concept of $\mathbb{Z}$-invariant maximal order and show $R_0$ is a $\mathbb{Z}$-invariant maximal order if and only if $R$ is a maximal order. We provide examples of $R_0$ which are $\mathbb{Z}$-invariant maximal orders but not maximal orders.
Group of Knowledge : Matematika
Original Language : English
Level : Internasional
Status :
Published
Document
No Title Document Type Action
1 2018-5-SMJ.pdf
Document Type : [PAK] Full Dokumen
[PAK] Full Dokumen View
2 STRONGLY GRADED RINGS WHICH ARE MAXIMAL ORDERS.pdf
Document Type : [PAK] Cek Similarity
[PAK] Cek Similarity View